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A method for solving Kirkwood-type equations in Banach spaces E~(A) and 
E~(A) is applied to derive spectral properties of Kirkwood-Salsburg and 
Kirkwood-Ruelle operators in these spaces. For stable interactions these opera- 
tors are shown to have, besides the point spectrum, a residual one. We establish 
also that the residual spectrum may disappear if a superstable (singular) interac- 
tion between particles is switched on. In this case the bounded Kirkwood- 
Salsburg operator is proved to have a zero Fredholm radius. 

KEY WORDS: Kirkwood-Salsburg and Kirkwood-Ruelle operators; spec- 
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1, I N T R O D U C T I O N  

In a previous paper (l) we have derived the Kirkwood-Salsburg (KS), 
Kirkwood-Ruelle (KR), and Mayer-Montroll  equations for classical con- 
tinuous systems in a finite volume for nonempty boundary conditions. 
Then, by using an analytic continuation in activity of the corresponding 
resolvents the uniqueness theorem for the solution is proved outside the 
well known analyticity circle in the activity plane, see Ref. 2, Section 4.2. 

We now extend this program to study the spectral properties of the KS 
and KR operators for tempered boundary conditions in Banach spaces 
E~(A) and E~(A). The main part of this paper will, in fact, consist in 
obtaining the structure of the spectrum and showing how it depends on the 
particle interaction and the choice of the operator domain. We prove that 
in a general case of stable interactions the KS and KR operators defined in 
a bounded region (finite volume) may have, besides the point spectrum, a 

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, 
USSR. 

577 
0022-4715/82/0300-0577503-00/0 �9 1982 Plenum Publishing Corporation 



578 Zagrebnov 

residual one and generalized eigenvalues. The point spectrum and general- 
ized eigenvalues coincide with the inverses of the zeros (in activity) of the 
grand canonical partition function for a fixed tempered configuration 
(boundary condition) outside the region. We also show that the residual 
spectrum may disappear when one goes to superstable interactions, e.g., 
singular pair potentials with a hard core or nonnegative potentials. 

In this paper we will restrict ourselves mainly to the case of bounded 
regions. But in the instructive particular case of the ideal gas the spectrum 
of the KS operator is described also in the infinite-volume limit (ther- 
modynamic limit). 

We stick to the notation of Refs. 1 and 2 but for the reader's 
convenience recall very briefly some of the main definitions and results in 
Section 2. The main results and proofs are brought together in Section 3. 
Section 4 is devoted to discussion. 

2. PRELIMINARIES 

Let A c W be an open bounded simply connected region (container in 
a v-dimensional space W) with a finite volume [AI = mesA. Let ~ = {X) 
refer to configurations of identical classical particles in W interacting by a 
(stable or superstable) pair potential �9 : W ~ R 1 U { + oo ), which is a mea- 
surable function with ~ 5 ( x ) - - ~ ( - x ) ;  see Ref. 2. Let the restriction ~I'A 
= f~A be the set of configurations in A. Then the subset f~k c ~2 x, X 
= W\A,  is said to be the set of tempered configurations (1) if for any 
X x E f ~  there exists a finite G(Xx) > 0 such that 

W(Xz,,Xx) = ~ O(x - y )  > - G(Xx)cardX A (2.1) 
xU.X A 
y ~ X x  

for arbitrary X A ~ ~2 A. By definition W(~ ,Xx)=  W(XA, eO)= 0; X A = Xn 
= (x I . . . .  , xn) if cardX A = n and X~= o = O. The grand canonical parti- 
tion function then is of the form 

z(B,z, AIxx)= fA dX.exp[ -BU(X.) - BW(X.,Xx)] (2.2) 7( 

The conditional correlation functions are defined as 

OA(Z,X,. I Xx) = rA(Z,X., [ Xx) [Z(B,z ,  a l  XX ) ] - '  
(2.3) 

z m + n  

n! n~O 

• fhndYnexp[-f lU(X,~ U Yn) - flW(Xm U Yn,Xx)] 
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Here xA(X,,,) is the characteristic function of the set A m C ~rnp Z iS activity, 
/3 -1 is temperature, and X m U Yn = (xl  . . . . .  Xm, y l ,  �9 �9 �9 ,Yn)" The conver- 
gence in (2.2) and (2.3) is ensured by the temperedness of the boundary 
condition: X x ~ ~2~ and by the interaction stability (2) : 

U(Xn)  = ~ (~)(X i -- Xj) >1 - -nB,  B >1 0 (2.4) 
l<i<j<~n 

Using (2.1)-(2.4) one gets in the physical region of activity z/> 0 that 

PA(Z,Xrnl XA)  ~ XA(Xm)zme  mfl[G(X'fi)+B] 

ezlAIexp(13[G(Xs)+ B]} ~. ( • [-/~,z,  AlXx)]- '  (2.5) 
Therefore, a powerful approach to study the correlation functions and 
solutions of correlation equations results from the observation (2-4) that 
(OA(Z, Xm[X-~)},,>~1 = pA(ZIX-~) may be viewed as a vector of a vector 
space. This space consists of the sequences of complex-valued measurable 

functions ( cp,~ ( Xm) ) m ~/1 = fP : 

Er ( ~ :  sup ~-mlf~,.(X,.)llL~<~.,,~ = I[~fle < oo} (2.6) 
rn) l  

and it is a Banach space with respect to JJ. lie-norm. Then, the vector 
p A ( z I X x )  will belong to the subspace E~ c E~ of the symmetric function 
sequences (l~ for ~ > z e x p [ - p G ( X  x) - fiB]; see (2.5). 

Now, let us define formally, on E~, the linear operator K; see Ref. 2: 
co 

(K~)(x 0 = ~ ~. oJLK.(x~, Y.)~o~(L) 
n=l 

( K ~ ) ( X m )  = e-[~w(xl,X,,,\x,) (~m_l (Xm\Xl )  di" ~ -~, 
n = 1 nu (2.7) 

• K,I,(XI, IIYn u (xm\~,)l I, m >~ 2 

K ~ ( x l , Y n ) =  ~I [e -~ ( : '~  - y ~ -  1] 
y E Y,, 

Then the KS operator for the container A c R ~ with a tempered boundary 
condition is ~3 ^ 

K A = e-BW,(Xx)~aK 

(2Acp)(X m ) = xA(Xm )9~m(Xm ) (2.8) 

[ ~/V1 (XA)XA~~ ] ( X m )  = W ( x I ,  X A ) x A ( X m  ) ~Dm ( xm ) 

and the corresponding KS equation is 

r = ze-~,(xx)~(Ae~ + zKAe p (2.9) 
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where c~ = { 1 , 0 , 0 , . . .  } and % ( 0 ) =  1; see (2.3). Analogously, we define 
the finite-volume K R  operator: 

I~IKA = e -/~ffz'(xx) XAHK (2.10) 

Here the "index-juggling" operator II: ~m(Xm)--> qOm(X,~ U (X,~\x,~)) satis- 
fies the condition (see Refs. 2-4) 

W(x,~,XmXX~) > - 2 B  (2.11) 

Therefore, in contrast to the operator K A : E ~  E~2~B~ [see (2.8)], the K R  
operator (2.10) is bounded: 

][IIKAII Ee "<< 4 - te~C( r (2.12) 

if the pair potential is regular in the sense of Ref. 2: 

c(B) =f dxle 11 < ~ (2.13) 

Let q~ ~ E~; then acting by the operator 17 on both sides of Eq. (2.9) one 
gets the K R  equation: 

ep = ze-Bffz~(xT');~AOt + zl~KA~ (2.14) 

The estimate (2.12) shows that if the domain D(HK A) of the KR 
A S operator is taken as E~, E , (A)=  XAE~, or E~(A)= 2AE~, the resolvent 

Rx(IIKA) = (M - IIKA)-i  is [[. [l~-analytic for 

X ~  C_(4)  = { X ~ C  :IXl >~-'e~C(r ~Ia(xx)+2el} (2.15) 

Thus, C (4)C P(IIKA), where P(IIKA) is the resolvent set of the K R  
operator. 

If X x ~ f~x and the particle interaction is stable, the grand partition 
function (2.2) can be continued in the activity to an entire function of order 
at most one. Let N'(.~) = (z i E C: ~,(B, zi, AI Xx) = 0}; then for z ~ N'(.~) 
one obtains an estimate similar to (2.5). Hence, in the region 

c ;  (4) = {z C : l z l  < ~e-r (xx)+~l} (2.1.6) 

OA(ZlXx) is a vector-valued [1" Ilcmer~176 hic function [see (2.3)] with 
poles coinciding with the set N' = +(4) N'(Z) N C~_ (4). It is clear that for 

the activity in the region 

C '  (4 )=  { z ~ C : z - ~ C  ( 4 ) } C C + ( ~ )  (2.17) 

the solution of the K R  equation (2.14) in the space E~(A) is unique and 
H �9 [[~-analytic in z. Consequently, for the restriction 1]K A ~E~(A) one gets 

q)(z IX\)  = R z ,(I-[KA)e-BW~(X-X);~Aa (2.18) 

and the following proposition. 
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Proposition 2.1. (see Ref. 1, 13). Let X x ~ f~k and the pair interac- 
tion potential be stable and regular. Then the KS and KR equations have 
in the space E{(A) the same unique solution (2.18) which is It �9 [[~-analytic in 
the region C'_(~), l[-][cmeromorphic in C+((), and coincides with 
0A(z [ xx) ~ c ;  (0. 

Remark 2.1, The set N'(E) does not depend on the choice of the 
parameter 4 > O. Therefore, the maximal analyticity circle for the solution 
~(z I xx) is 

C~={z~C:lzl<a=minlzil, ziEN'(E)) (2.19) 
i ) l  

Then for 4 > 0 large enough the set N+ (4)4= (O); see Fig. 1. The points 
represent there the set N'(Z) and the region C\ C+ (4) is hatched. 

| 

Fig. 1. Analytic properties of correlation vector-valued function p,~(z ] xx) (see 2.18 and 3.7). 
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3. RESULTS 

Zagrebnov 

Ideal Gas 

In this case the KS operator (2.8) has the following simple form [see 
(2.7)1: 

KA~ = {O, X A ( X 2 ) ~ I ( X 2 \ x t ) ,  . . . , X A ( X m ) ~ ) m _ l ( X m \ x , )  . . . .  } (3 .1)  

Then one has 

IIgA~lle = ~-l lL~lle ,  ~ E E~(E E~(A)) (3.2) 

Therefore, for both the domains D(KA)= E~ and D(Ka)=  E~(A) the 
spectrum o(KA) C_ C((), where 

C(~)= {XEC :tXl < ~-~) (3.3) 

Theorem 3.1. Let ~ ( x ) =  0; then the spectrum o(KA) of the KS 
operator with D(KA) = E~(A) is residual and 

o(KA) = or~s(KA) = C(~) (3.4) 

Remark 3.1. The KS operator for the ideal gas (3.1) is very similar 
to the right-shift operator in loo. Thus, one can prove (3.4) by a proper 
modification of the arguments used for loo in Ref. 5, Section VI.3. We 
propose below a line of reasoning that is more appropriate for our aim 
because it works also for nonideal systems; see Theorem 3.3. 

Proof of Theorem 3.1. The spectrum of a linear operator, e.g., K A, 
is known to be the union of three disjoint components: O(KA) = op(KA) U 
Or U Ores(KA). Moreover, one gets acont(KA)= L(KA)\[F(K A) U 
%(KA) ] and ores(K A) = F(KA)\oe(KA), where L(KA) and F(KA) are, respec- 
tively, the limit and the compression spectra of the operator KA .z As follows 
from (3.1), the equation 

has only the trivial solution, i.e., the point spectrum op(Ka)= (0}. Con- 
sider now the interior of the circle C(~). From the KS equation (2.9) we find 
that the unique solution is of the form 

q0(X) = (x-mXA(X,~)),~ >~ ,= 9a(z = X- ')  (3.5) 

2 See, e.g,, P. Halmos, A Hilbert Space Problem Book (D. Van Nostrand Company, Princeton, 
New Jersey, 1967.) We use the name "limit spectrum" instead of the "approximate point 
spectrum" used in the Halmos book. 
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For IX{ < ~ - i  one gets pA(h - t )  ~ E~(A). Hence the vector iAO~ (~ E~(A) 
does not belong to the range Ran(M - KA). Note that for a fixed h ~ C(() 
\OC(() there exists a 4' > ~ such that pA(h -I )  E E~,(A), see (3.5). Then, by 
the open mapping theorem (hi - Ka) : ~ , ( p a ( h  -1))-~ %e,(XAa),* where 
s~,( . )  is a neighborhood of the corresponding vector in E~,(A). A little 
reflection shows that the imbedding Et(A ) c Et,(A) of Banach spaces for 
4' > ( implies (i) the subspace E~(A) is not dense in the space E~,(A) in the 
topology defined by the norm II" [1~,; (ii) if cp E E~(A), then %,,(q~) N E~(A) 
= %~(cp) is a neighborhood of the vector q~ in Et(A). Therefore, in the space 
E~,(A) there is a neighborhood ~,,(0A(h-1)) such that ~,,(0A(h-1)) A E~(A) 
= (O}. Together with oe(KA) = (O} this means that the Ran(M - KA) does 
not intersect the neighborhood J,()~Aa)= ( ( M -  KA)~t,(OA(h-t))) fq E,(A). 
Hence we get C(()\OC(~)c F(KA). It remains to consider the boundary 
0 C(~). Using (3.2) one gets 

Then L(KA)= 0C(~) because always the boundary 3o(KA)C L(KA). On 
the other hand, for arbitrary h ~ 3 C ( ~ )  consider the vector 0A(h -1) 
E E,(A); see (3.5). The equation 

0A(h- ' )  = ( M -  KA) ~ 

has the unique solution 

+[0A] =  eda) 
n=0 m~>l 

Thus, the vector Oa(h-~) ~ Ran(M - Ka) for IX[ = ~ -  1. Suppose now that 
the vector /~ ~ ~.~ (Oa(~-l)) = (rp : Ilqo - oa(h-~)[l~ < ~} for some ~ > 0, 
then we have 

IReh"t~,(X,) - ReX~OA(X-',X,)I ~< ~-" l /~ , (X,)  - O~(X-',X,) I < e 

and, consequently, R e X " / x , ( X , ) > 1 - e .  Therefore, one gets I~/,~[/~](Xm)[ 
>/ m ( 1 -  e)~ m+l. Hence, the ball ~,,e(OA(h-1)) is also disjoint from the 
R a n ( M - h A ) ,  i.e., ~C(~)C F(Ka) and the continuous spectrum Ocont(Ka) 
= (0}. The collection of the above results and the definition of Ores(Ka) 
complete the proof. �9 

Corollary 3.1 (Thermodynamic limit). The KS operator for the ideal 
gas in the limit of the infinite container has the form K =  K~=a. and 
lIKll~e = lIKelier(A) ; see (2.7) and (3.1). The above line of reasoning gives 
that the spectrum o(K)  for D(K)= Er is also residual and 

o ( K )  = Ores(K)= Ores(K A ~'E~(A)) (3.6) 

see Fig. 2. 



584 Zagrebnov 

Fig. 2. 

| 
Oc = 0% 

Spectrum of KS operator for ideal gas in finite- and infinite-volume cases. Spectrum 
is purely residual. 

Remark 3.2. Results of Theorem 3.1 remain unchanged if one 
considers the restriction K A ~'E~(A). For  the extension of K A to D(KA) = E~ 
(or = E{) one gets K e r K  A r {rp = 0} and, as a result, L(KA) A F(Ka)  = 
(x  = 0) .  

Stable Interactions 

Now the KS operator  (2.8) is not  bounded,  in general, in any of the 
spaces E~,E~(A),E[(A); see Section 2. Therefore,  it is relevant here to 
consider also the K R  operator  (2.10). We shall start with spectral properties 
of the KS operator.  

T h e o r e m  3.2. Let  X x E f~x and the pair potential  q~(x) 4= 0 be stable 
and regular. Then  one gets 

(i) for D(KA)= E~ the spectrum Op(KA) 5 e= (0) ,  if ~ > ae ~[c(x~)+Bl 
and (~ = 0} E L(KA) f') r(KA); 

(ii) for D(KA) = E{(A) the spectrum op(KA) C {X i = z i- 1. zi ~ N,(E)) 
= N(E) ;  

(iii) if there exists T > 0 such that rA(zlXx)f~ E~(A) for z ~ G~(~) 
= {z ~ C : l z [  > "/~} [see (2.16)], then for D(KA) = El(A) the set 

6e(KA) = N(•)  A G~(~) (3.7) 

corresponds to generalized eigenvalues; here Gv(~ ) = {X = z - l : z  
E 

Proof. (i) The  KS equation, as it originates, (2} is identically satisfied 
by the vector rA(ZlXx) if the free term has the form zY,(fl, z ,A[Xs) 
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e-~W'(Xx>~Aa, see (2.3) and (2.9). Then the equation 

KA~ = ~W, ~ ~ E~ (3.8) 

should (see Ref. 1 and Proposition 2.1) have nontrivial solutions 
(rA(Zi[XX)}i>l for kt i = zi -l, where z i E N'(Z). Then the estimate (2.16) 
and Remark 2.1 give the first part of the desired result. The second part is 
the consequence of K e r K  A = ~sE~; compare with Remark 3.2. 

(ii) In the subspace E/(A) there are no other solutions of Eq. (3.8) but 
(rAOti--llg-~)}i>l, ~,i~g(.E);  see Ref. 1. Thus, we get for the point 
spectrum that op(Ka) C N(Y,). 

(iii) For [zil > V~ we have rA(zii X ~ ) ~  El(A). Hence the set (3.7) 
consists of generalized eigenvalues in the sense that corresponding eigenvec- 
t o r s  (ra(gi]Xx)) i>~ 1 (~ D(KA). �9 

Corollary 3.2. We recall that in (2.19) a > 0 and the set N(E') has 
the accumulation point at most at ~. --- 0. Then the estimate (2.16) and (iii) 
show that for ~ > 0 small enough we have oe(K A) = (O}, i.e., the KS 
operator has only generalized eigenvalues. 

Theorem 3.3. Let the assumptions of Theorem 3.2 be valid. Then 
for the K R  operator (2.10) with domain D(FIKA) = E{(A) one has 

(i) ep(IIKA) C N(Z); 
(ii) 8p(HKA) = N(Z) O Gv(~ ) [see (3.7)]; 

(iii) or~(HKA) D Gv(~)\Sp(1-IKA). 

Proof. If one remarks that H ~'E~ = I and KerI I  = {r = 0}, then the 
proof of (i) and (ii) is an immediate consequence of the proof of (ii) and (iii) 
in Theorem 3.2. 

(iii) Let C+(li) = {X = z - l : z  ~ C+(~)}; then estimate (2.16) shows 
that for any )k ~ Gr(~)\N(E ) there is ~ > ~ such that pa(X-l[ Xs ) ~ E~,(A). 
Using Proposition 2.1 one deduces that for 2~ ~ Gv(~)\N(~- ) the operator 
( h i - I I K a )  maps the vector 0 A ( X - I I x x ) ~  E~(A) into the vector a A 
= exp[-BW=(Xa)12A~ ~ E~(A). Because the operator ( M -  FIKA) is 
bounded  (2.12), then by the open mapping theorem ( M - I I K a ) :  
6),_Lu(pA()k-IIXs))--~O&U(aA) , where ~ ) denotes a neighborhood in 
E~,(A). Further, we can follow the arguments used in the proof of Theorem 
3.1. Then, there is such a ne ighborhood  ~ , (pA(X-~IX~-) )  that  
~,(0A(X-1IXx)) A E~(A) = {O) for X ~ Gv(~)\N(.~). Therefore, the set 
R a n ( M -  HKA) does not intersect neighborhood 

~(aA) = {(XI -- HKA)~g,(pA(Tt - t  ] XS) } } O E~(A) 

Hence, O~s(HKA) 4= {0} and contains the set Gr(~)\fe(HKA). �9 
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�9 ". 

t 

Fig. 3. General structure of KS(KR) operator spectrum. 

Remark 3. 3. The structure of o(IIKA) is illustrated in Fig. 3. Here 
Co-- (X = z - l : z  e C6} [see (2.19)1; the hatched area C \ C + ( 0  contains 
the circle G~(0 and the set N(E) is marked by points. It should be stressed 
that the arguments in the proof of Theorems 3.2 and 3.3 do not eliminate 
the ares(KA) or Ocont(KA) and Ores(l'IgA) or Ocont(I~gA) in the circle 
c\c+(0. 

Remark 3.4. The condition (iii) in Theorem 3.2 is clearly valid for 
the ideal gas; see (3.5). A more difficult problem is to single out a class of 
nontrivial pair potentials satisfying the condition (iii); see Ref. 1. 

Theorem 3.4. Let a pair interaction potential be such that ~(x) >/0 
and lim~_, 0 I]O(x)N r=(x~a, : Ixl<O = 0. Then condition (iii) in Theorem 3.2 is 
valid: one has 7 = 1 and OGy(O = 0C+(0.  

Proof. The vector rA(zlX-~) [see (2.3)] is connected with the vector 

fA(z I XT. ) = {XA(Xm )zme-nV(x,.)-~w(x~. xx)),,~, (3.9) 
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by the linear transformation 62 A : E~(A) ~ E~(A) (see Refs. 1,6, and 7) 

r~(z t xx) = % A(~ I xx) 

% = e ~, (aA~)(x~) = dy~,.+,(Xm v y) (3.10) 

If@All E~(A) = [I6flAlll E~(A) = e~lAI 

By the properties of the pair potential, f i ( z l  XX) E E~(A) for ]z I < ~ and 
fa(z ]Xx)(E E2(A) for ]z] > ~; see (3.9). Therefore from (3.10) and the 
closed graph theorem one gets the same for the vector rA(ZlX x) 
= % A ( z  ] x~).  III 

Superstable Interactions 

For the superstable interaction one has (2) 

V ( X . ) > ~ - . B - ~ A ,  A > 0 ,  B ~ 0 ,  X~ (3.I1) 

In general, the condition (3.11) does not imply the boundedness of the KS 
operator but it gives rA(zIXx) E E~(A) for arbitrary z ~ C; see (2.5). Thus, 
the condition (iii) in Theorem 3.2 is now false. Nevertheless, we cannot 
assert that with increasing the repulsive part of the interaction [compare 
(2.4) and (3.11)] the residual spectrum for KR or KS operators disappears. 

We can prove this property only for two classes of superstable interac- 
tions when one of the following additional conditions on the pair-potential 
repulsive part is imposed: (a) either the potential has a hard core singular- 
ity: �9 ( x ) - - - + ~  for [ x [ < c ;  (b) or ~ ( x ) > 0  and ~(x)>O for some 
neighborhood of the origin (compare Theorem 3.4). Each of these condi- 
tions implies the superstability and, together with regularity (2.13), provides 
the boundedness of the KS operator (2.8) in the space E;. 

T h e o r e m  3.5. Let Xx E ~k and the pair potential q~(x) be regular 
and satisfy one of the conditions (a) or (b). Then the KS operator (2.8) with 
D(KA) = E~(A) has only the point spectrum: 

O(KA) = op(KA) = N(Z) (3.12) 

Proof. Using the transformation 9 A (3.10) one can bring the opera- 
tor K A T'E~(A) to a canonical form (see Refs. 1 and 6): 

o~ 1 
(@7~ 1KA~dAep)(X,) = -exp[ - r ]XA(X,) ~_, ~. ~\ dY,, eG( Y, ) 

(~ ; '  K6% ~)(X~ ) = exp[ - ~W(x,,Xx) - /~W(x, ,X~\~,)]  

X XA(x,)epm_,(Xm\xO, m > 2 (3.13) 
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As ~A preserves the symmetry and the similarity transformation ~2/~ ~KA~ A 
= K A does not change the spectrum, we reduce the problem to the 
determination of o(/s for O(Ka) = E[(A). Let 

eP(n) = -- ~ t;1 ~ldYl(]~ep)  ( YI ), n >10 
l = l  " J A  

Then straightforward calculations show that the operator/s has the form 

/s = L +/1.  (3.14) 

ff ,,qg = { XA( xl)exp[ - ~SW(xt,Xx) lq) ( '-  '}, 

XA(X2) exp [ - /3U(X2)  - JSW( Xa' Xx) ] qg("- 27 , . . . ,  

xa(X,, )exp[ - 13 U(X, ) - ,8 W(X,,, Xx)] q0(~ 0 , . . . ,  0 , . . .  } 

/4,q~ = {0 . . . . .  0 , •  r  + CU(X,,+~\X,,) 

- B w ( x .  + ,, xx) ] + , \ &  ) . . . . .  

xA(Xn+k )exp[ -- t~U(X.+ k) + ~U(X.+k\X . )  

- . . . .  ) 

(3.t5) 

If the pair potential satisfies (a), then for the container A there exists a 
number na(e ) such that U(X.) = + oo for n > nA(c ). Hence, for n > nA(c ) 
one has /q .  = 0 [see (3.15)],.and/(~ is equal to the finite rank operator F. 
[see (3.14)]. Therefore, o ( K ~ ) =  op(/~[) and then O(KA)= op(KA). Using 
(3.13) one can verify, (see Refs. 1 and 4), that for the operator K A T'E{(A) 
the set of eigenvalues coincides with N(.~); here superstability implies that 
the eigenvectors {rA(~ki-ll xx)}i>/t ~ E~(A) for h i E N(Y,). 

Let now the pair potential satisfy (b). Then for any e > 0 there exists a 
number n(e) such that for n > n(c) one has [see (3.11) and (3.15)] 

(11171..11E~(A))I/n< ~--le-n[lA/IAt < e (3.16) 

Consider the operator (X"I - / ~ )  represented in the form 

X " I - / ( ~  = [X"I - Ftt(l--X-nI~t.t)-I](1--X-;"l~In) (3.17) 

From the estimate (3.16) it follows that for n > n(e) the spectrum of the 
K A)E~(A) in the region S, = {X ~ C : Ihl > e} consists only of n operator ~n s 

eigenvalues. Let to = exp(2~ri/n); then 

X"I - K A ~" - . . . .  0 tI /~A)( wxl - /~A) " (tO "-  tM -- /~A)  (3.18) 



Spectral Properties 589 

The invertibility of (X"I - / ( ~ )  implies the same for the operator (Xl - /~A), 
hence one gets 

[ o ( ~ A ) ] ~ n S ( C o ( I ~ ) A S  =op(I(~)NS~ (3.19) 

Therefore, the spectrum of the operator ~A ~'E~(A) in the region S~ consists 
of a finite number of isolated points: o(KA) N S~ C op(I(a) ~. Since the value 
of �9 > 0 may be arbitrarily small [see (3.16)], one gets o(KA) = op(/(A) and 
consequently O(KA)= op(KA). The proof of the second part of equality 
(3.12) is the same as in the case (a). �9 

Remark 3.5. From the proof one deduces that the spectral properties 
of the KS operator K~['E~(A) are a consequence of its topological proper- 
ties. Namely, in the case (a) the KS operator is potentially compact in the 
sense that K~ is compact for n > nA(c) : K,~ = ~ A/7.62 A 1; in the case (b) the 
KS operator is quasipotentially compact in the sense that for any e > 0 
there exists a number n(~) and a compact operator F,( 0 = ~ 
such that I[K~ (~) - F,(~)[IE~ < e"(~) [see (3.16) and Ref. 8, Section X.5]. 

These properties can be expressed more precisely by the Fredhohn- 
operator theory. We recall the reader (see, e.g., Ref. 9) that the operator 
KA(h ) = M -  K~ is Fredholm at the point X E C [we denote KA(?t ) 

~ if it can be represented in the form 

Ka(X) = + (3.20) 

Here U x : E~(A) ---> E~(A) is invertible and T x is compact. Then the number 

p(KA) = inf {])q: Ka(X ) ~ ~(E~(A))} 

is called the Fredhotm radius of the operator K A with D(KA) = E/(A). It is 
clear that o(KA) <. r(KA), where r(KA) is the spectral radius of K A. More- 
over, we show the following theorem. 

Theorem 3.6. Let the assumptions of Theorem 3.5 be valid; then 

p(KA) = O. 

Proof, The operator KA~'E~(A) is proved to have o(KA)= op(KA) 
with the accumulation point at most at ~ = 0; see Theorem 3.5. Then for 
any ~ ~ C there is a number n large enough such that we simultaneously 
have (][/4.][Eg(A))'/" < [~]exp(-2~[A]/n) [see (3.16)] and {X k =wkx}~=~ 1 
r o(KA), where ~o = exp(2~ri/n). Therefore, from (3.14) and (3.18) it fol- 
lows that KA(~ ) is a Fredholm operator [see (3.10) and (3.20)]: 

KA()t ) = (X ~/-- H,  ) V,- '  - g,  V,- '  (3.21) 
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here 

g n = (ooXI - KA)(Oa2Xl -- K A ) ' ' "  (co n - Ix / - -  KA) 

V. = ~2A/~.~2 I, Hn = ~A/in~22 ~ 

If one takes into account that the representation (3.21) is obtained for 
arbitrary X 4 = 0, then O(KA) = 0. �9 

R e m a r k  3. 6. In the Fredholm region of the operator K A, here for 
X ~ C\{0}, the resolvent Rx(KA) is known to be a finite-meromorphic 
function, see Refs. 8, 9. 

4. DISCUSSION 

The spectral properties of the KS operator in a container with empty 
boundary conditions (continuous or lattice systems) were considered for the 
first time by Pastur [6] under a restriction condition on the operator 
domain. It was supposed that D(KA) = @s, where @, c U~>0E~(A) is an 
invariant subspace of the operator K A. Then the spectrum O(KA~'@s) was 
shown to be pointlike. It coincides with the set N(,~) and the KS equation 
has some properties similar to those of the Fredholm equations. Reformula- 
tion of Ref. 6 to the case of external fields is the subject of Ref. 10. In Ref. 
11 there is an interesting attempt to determine the structure of the KS 
operator spectrum in infinite volume. 

Note here that nonempty boundary conditions are equivalent to exter- 
nal fields [see Ref. 1 and (2.8), (2.9)] and have no influence on the spectral 
properties, defining only the position of the spectrum points on the plane C. 

Finally, the spectral properties of some "modified" KS operator in a 
container with empty boundary conditions for finite range hard core pair 
potentials were considered in Ref. 12. Some power of such a KS operator 
was shown to be a compact operator. Hence, the "modified" KS operator 
has a point spectrum (its explicit form has not been determined). 

In the present paper the "ordinary" KS operator is shown to have the 
same property; see Theorem 3.5. Moreover, for superstable interactions, 
satisfying Theorem 3.5, the point spectrum and its structure are a conse- 
quence of t h e  following general property: the KS equation is of the 
Fredholm type and the KS operator has a Fredholm radius equal to zero. 
These results are generalizations of those of Refs. 10 and 12 and partially of 
Ref. 6. We have found also that the decrease of the repulsive part of a pair 
potential (stable potentials) leads to the appearance of a residual spectrum 
for the KR operator (Theorem 3.3) and KS operator (Theorem 3.1), while 
for the KS operator for a stable nonzero potential we know only that 
o p ( K A )  k.) ~p(KA) = N(~), D(KA) = E~(A); see Theorem 3.2. 
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It  should  be  noted  here that,  s imilar ly to Theorems  3.5 and  3.6, 
spectra l  proper t ies  of the KS ope ra to r  in the space |  are p r o b a b l y  def ined  

by  its topologica l  pecul iar i t ies  if one endows |  with a na tu ra l  topology;  

see R e m a r k  3.2 in Ref.  13. W e  shall  re turn  to this p rob l e m in a subsequent  

paper .  
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